
会员
应用人工智能:工程方法(原书第2版)
更新时间:2023-11-13 15:23:18 最新章节:封底
书籍简介
大多数的AI书籍主要聚焦于AI背后的理论方法,却很少关注AI应用程序的工程化。目前存在哪些AI库、框架和服务?在哪种情况下应该选择哪种库、框架和服务?如何将它们整合到一个具有良好用户体验、易于维护的AI应用程序中?如何满足功能性要求和非功能性要求,特别是高性能要求?针对上述问题,本书结合当前的新兴技术和具体实例给出了很好的答案。本书首先介绍AI的定义以及AI的简要发展史,接着介绍主要的AI方法,包括机器学习和知识表示,之后给出AI应用程序架构设计的指导原则,最后聚焦于AI的各个分领域,包括信息检索、自然语言处理及计算机视觉。书中涵盖大量应用实例,其中,虚拟博物馆实例贯穿全书。此外,本书还提供相关AI产品列表及源代码样例,方便读者快速开发自己的应用。
品牌:机械工业出版社
译者:郭金林
上架时间:2023-07-01 00:00:00
出版社:机械工业出版社
本书数字版权由机械工业出版社提供,并由其授权上海阅文信息技术有限公司制作发行
最新章节
(德)伯恩哈德·G.胡姆
同类热门书
最新上架
- 会员本书基于国产自主可控龙芯处理器,系统地介绍计算机视觉领域的基本理论与实践,并结合当前主流的深度学习框架和龙芯平台以项目式教学的形式讲述任务的实施。本书主要包括OpenCV基础功能实战、深度学习框架的部署、计算机视觉技术基础知识、图像分类网络的部署、目标检测网络的部署、图像分割网络的部署、龙芯智能计算平台模型的训练和龙芯智能计算平台的推理部署等内容。通过阅读本书,读者能够了解和掌握深度学习在计算机视计算机10万字
- 会员本书是一本全面介绍机器学习方法特别是算法的新书,适合初学者和有一定基础的读者。机器学习可以分成三大类别,监督式学习、非监督式学习和强化学习。三大类别背后的算法也各有不同。监督式学习使用了数学分析中函数逼近方法、概率统计中的极大似然方法。非监督式学习使用了聚类和贝叶斯算法。强化学习使用了马尔可夫决策过程算法。机器学习背后的数学部分来自概率、统计、数学分析以及线性代数等领域。虽然用到的数学较多,但是最计算机7.4万字
- 会员本书从技术、应用和产业3个维度为切入点,对智能语音语义领域相关的热点和趋势展开研究。本书以“人与机器的对话”开篇,讲述人类语音生成、传播和感知的过程,引发对于机器智能语音听说的思考,进而阐述技术探索发展史;然后,分析了以语音交互为核心的技术现状,综合剖析提出全双工、端到端模型构建、语音假冒攻击等热点;其次,从政策、投融资和产业规模上,分析整体智能语音产业环境,纵观国内外企业在相关技术和产品上的积极计算机13.6万字
- 会员本书以Python3.10.7为平台,以实际应用为背景,通过概念、公式、经典应用相结合的形式,深入浅出地介绍了Python图形图像处理经典实现。全书共10章,主要包括绪论、迈进Python、Python图形用户界面、数据可视化分析、图像视觉增强分析、图像视觉复原分析、图像视觉几何变换与校正分析、图像视觉分割技术分析、图像视觉描述与特征提取分析、车牌识别分析等内容。通过本书的学习,读者可领略到Py计算机12.3万字
- 会员这是一本人人都能读懂的大模型综合指南,既是一本大模型的科普书,又是一本大模型的商业书。由中国电信研究院天翼智库官方出版,从核心技术、基础设施、商业应用、产业体系、安全治理5个维度全面讲解了大模型。语言上通俗易懂,内容上深入浅出,呈现上图文并茂,给读者良好阅读体验的同时,让读者对大模型的理解事半功倍!无论你是AI工程师,还是完全没有IT技术背景的爱好者;无论你是一线的从业人员,还是企业的管理者和决策计算机13.2万字
- 会员本书着重阐述了深度学习时代的计算机视觉算法的工作原理,首先对深度学习与计算机视觉基础进行了介绍,之后对卷积神经网络结构的演化过程,以及基于深度学习的目标检测算法、图像分割算法、人体姿态估计算法、行人重识别与目标跟踪算法、人脸识别算法以及图像超分辨率重建方法进行了介绍。本书系统讲解了在日常生活和工作中常见的几项计算机视觉任务,并着重介绍了在当今深度学习时代,这些计算机视觉任务是如何工作的,可使读者快计算机9.9万字
- 会员2023年以来,OpenAI相继发布了聊天机器人模型ChatGPT、新一代多模态大模型GPT-4等产品,以强大的能力俘获了大量用户,颠覆了用户对于AI的认知。本书以ChatGPT为中心,对ChatGPT的相关知识进行详细的讲解。本书共12章,前5章从ChatGPT概述、技术底座、内容变革、产业格局、商业展望5个方面对ChatGPT进行了解读,帮助用户全面了解ChatGPT,对其形成完整的认知。第6计算机12.8万字
- 会员本书兼顾机器学习基础、经典方法和深度学习方法,对组成机器学习的基础知识和基本算法进行了比较细致的介绍,对广泛应用的经典算法如线性回归、逻辑回归、朴素贝叶斯、支持向量机、决策树和集成学习等算法都给出了深入的分析并讨论了无监督学习的基本方法,对深度学习和强化学习进行了全面的叙述,比较深入地讨论了反向传播算法、多层感知机、CNN、RNN和LSTM等深度神经网络的核心知识和结构;对于强化学习,不仅介绍了经计算机20.6万字
- 会员本书由科大讯飞与中国科大的大模型的资深专家联合撰写,一本书打通大模型的技术原理与应用实践壁垒,深入大模型3步工作流程,详解模型微调、对齐优化、提示工程等核心技术及不同场景的微调方案,全流程讲解6个典型场景的应用开发实践。本书共10章,从逻辑上分为“基础知识”“原理与技术”“应用开发实践”三部分。基础知识(第1章)介绍大模型定义、应用现状、存在的问题,以及发展趋势。原理与技术(第2和3章)详细讲解大计算机12.3万字
同类书籍最近更新
- 会员本书向数据科学家、数据工程师、架构师和业务分析师展示了如何使用领先的图数据库模型TigerGraph,目标是向读者介绍图数据结构、图分析和图机器学习的概念、技术和工具。三位作者介绍了涵盖多种当代业务需求的真实使用案例。读者将探索从互联数据中获取价值的三阶段方法:连接、分析和学习。几乎每章的开头都列出了对应的三个方面的目标:学习图分析和机器学习的概念;用图分析解决特定问题;了解如何使用GSQL查询语人工智能12.5万字
- 会员近年来,深度学习在人工智能的发展过程中起到了举足轻重的作用,而图神经网络是人工智能领域的一个新兴方向,被称为图上的深度学习。本书详细介绍了从深度学习到图神经网络的基础概念和前沿技术,包括图上的深度学习、图神经网络的数学基础、神经网络学习与算法优化、深度学习基础、神经网络中的表示学习、面向图数据的嵌入表示、初代图神经网络、空域及谱域图卷积神经网络等内容。为增强可读性,本书叙述清晰、内容深入浅出、图文人工智能17.1万字
- 会员本书简洁地介绍了现代神经网络、人工智能和深度学习技术,专门为软件工程师和数据科学家设计。第1章逐步介绍神经网络的基础知识。第2章比较TensorFlow1.x和TensorFlow2.0编程模型。第3章重点介绍回归。第4章介绍卷积神经网络及其在图像处理中的应用。第5章讨论了CNN在图像、视频、音频和文本处理方面的高级应用。第6章重点介绍生成对抗网络。第7章介绍词嵌入。第8章介绍基本嵌入方法的各人工智能17.9万字
- 会员本书从AI的发展历史讲起,介绍了目前最热门的深度学习加速芯片和基于神经形态计算的类脑芯片的相关算法、架构、电路等,并介绍了近年来产业界和学术界一些著名的AI芯片,包括生成对抗网络芯片和深度强化学习芯片等。本书着重介绍了用创新的思维来设计AI芯片的各种计算范式,以及下一代AI芯片的几种范例,包括量子启发的AI芯片、进一步提升智能程度的AI芯片、有机自进化AI芯片、光子AI芯片及自供电AI芯片等。本书人工智能26.7万字
- 会员本书分为两大部分:第一部分主要基于Scikit-Learn,介绍机器学习的基础算法;第二部分则使用TensorFlow和Keras,介绍神经网络与深度学习。此外,附录部分的内容也非常丰富,包括课后练习题解答、机器学习项目清单、SVM对偶问题、自动微分和特殊数据结构等。书中内容广博,覆盖了机器学习的各个领域,不仅介绍了传统的机器学习模型,包括支持向量机、决策树、随机森林和集成方法,还提供了使用Sci人工智能39.5万字