参考文献

[1] Sun Y, Jiang Y, Sun X W, et al. Beyond OLED: Efficient quantum dot light-emitting diodes for dis-play and lighting application. The Chemical Record, 2019, 19(8): 1729-1752.

[2] Arquer F P G D, Talapin D V, Klimov V I, et al. Semiconductor quantum dots: Technological pro-gress and future challenges. Science, 2021, 373(6555): eaaz8541.

[3] Pu C, Dai X, Shu Y, et al. Electrochemically-stable ligands bridge the photoluminescence-electroluminescence gap of quantum dots. Nature Communications, 2020, 11(1): 937.

[4] Shu Y, Lin X, Qin H, et al. Quantum dots for display applications. Angewandte Chemie Internation-al Edition, 2020, 59(50): 22312-22323.

[5] Shirasaki Y, Supran G J, Bawendi M G, et al. Emergence of colloidal quantum-dot light-emitting technologies. Nature Photonics, 2012, 7(1): 13-23.

[6] Dai X, Deng Y, Peng X, et al. Quantum-dot light-emitting diodes for large-area displays: Towards the dawn of commercialization. Advanced Materials, 2017, 29(14): 1607022.

[7] Shen H, Wang H, Tang Z, et al. High quality synthesis of monodisperse zinc-blende CdSe and CdSe/ZnS nanocrystals with a phosphine-free method. CrystEngComm, 2009, 11(8): 1733-1738.

[8] Lübkemann F, Rusch P, Getschmann S, et al. Reversible cation exchange on macroscopic CdSe/CdS and CdS nanorod based gel networks. Nanoscale, 2020, 12(8): 5038-5047.

[9] Cho W, Kim S, Coropceanu I, et al. Direct synthesis of six-monolayer (1. 9 nm) thick zinc-blende CdSe nanoplatelets emitting at 585 nm. Chemistry of Materials, 2018, 30(20): 6957-6960.

[10] Wang F, Chen B, Pun E Y B, et al. Alkaline aluminum phosphate glasses for thermal ion-ex-changed optical waveguide. Optical Materials, 2015, 42: 484-490.

[11] Wang F, Chen B, Pun E Y-B, et al. Dy3+ doped sodium-magnesium-aluminum-phosphate glasses for greenish-yellow waveguide light sources. Journal of Non-Crystalline Solids, 2014, 391: 17-22.

[12] Wang F, Chen B J, Lin H, et al. Spectroscopic properties and external quantum yield of Sm3+doped germanotellurite glasses. Journal of Quantitative Spectroscopy and Radiative Transfer, 2014, 147: 63-70.

[13] Pu C, Qin H, Gao Y, et al. Synthetic control of exciton behavior in colloidal quantum dots. Journal of the American Chemical Society, 2017, 139(9): 3302-3311.

[14] Zhang A, Dong C, Liu H, et al. Blinking behavior of CdSe/CdS quantum dots controlled by alkylthiols as surface trap modifiers. The Journal of Physical Chemistry C, 2013, 117(46): 24592-24600.

[15] Omogo B, Aldana J F, Heyes C D. Radiative and nonradiative lifetime engineering of quantum dots in multiple solvents by surface atom stoichiometry and ligands. The Journal of Physical Chemistry C, 2013, 117(5): 2317-2327.

[16] Efros A L, Nesbitt D J. Origin and control of blinking in quantum dots. Nature Nanotechnology, 2016, 11(8): 661-671.

[17] Hohng S, Ha T. Near-complete suppression of quantum dot blinking in ambient conditions. Journal of the American Chemical Society, 2004, 126(5): 1324-1325.

[18] Rabouw F T, Antolinez F V, Brechbühler R, et al. Microsecond blinking events in the fluorescence of colloidal quantum dots revealed by correlation analysis on preselected photons. The Journal of Physical Chemistry Letters, 2019, 10(13): 3732-3738.

[19] Jang E, Jun S, Jang H, et al. White-light-emitting diodes with quantum dot color converters for dis-play backlights. Advanced Materials, 2010, 22(28): 3076-3080.

[20] Ziegler J, Xu S, Kucur E, et al. Silica-coated InP/ZnS nanocrystals as converter material in white LEDs. Advanced Materials, 2008, 20(21): 4068-4073.

[21] Anandan M. Progress of LED backlights for LCDs. Journal of the Society for Information Display, 2008, 16(2): 287-310.

[22] Klimov V I. Multicarrier interactions in semiconductor nanocrystals in relation to the phenomena of Auger recombination and carrier multiplication. Annual Review of Condensed Matter Physics, 2014, 5(1): 285-316.

[23] Klimov V I. Spectral and dynamical properties of multiexcitons in semiconductor nanocrystals. Annu-al Review of Physical Chemistry, 2007, 58(1): 635-673.

[24] Robel I, Gresback R, Kortshagen U, et al. Universal size-dependent trend in Auger recombination in direct-gap and indirect-gap semiconductor nanocrystals. Physical Review Letters, 2009, 102(17): 177404.

[25] Pietryga J M, Zhuravlev K K, Whitehead M, et al. Evidence for barrierless auger recombination in PbSe nanocrystals: A pressure-dependent study of transient optical absorption. Physical Review Let-ters, 2008, 101(21): 217401.

[26] Chepic D I, Efros A L, Ekimov A I, et al. Auger ionization of semiconductor quantum drops in a glass matrix. Journal of Luminescence, 1990, 47(3): 113-127.

[27] Shimizu K T, Neuhauser R G, Leatherdale C A, et al. Blinking statistics in single semiconductor nanocrystal quantum dots. Physical Review B, 2001, 63(20): 205316.

[28] Kuno M, Fromm D P, Johnson S T, et al. Modeling distributed kinetics in isolated semiconductor quantum dots. Physical Review B, 2003, 67(12): 125304.

[29] Frantsuzov P A, Marcus R A. Explanation of quantum dot blinking without the long-lived trap hy-pothesis. Physical Review B, 2005, 72(15): 155321.

[30] Tang J, Marcus R A. Diffusion-controlled electron transfer processes and power-law statistics of fluo-rescence intermittency of nanoparticles. Physical Review Letters, 2005, 95(10): 107401.

[31] Frantsuzov P A, Volkan-Kacso S, Janko B. Model of fluorescence intermittency of single colloidal semiconductor quantum dots using multiple recombination centers. Physical Review Letters, 2009, 103(20): 207402.

[32] Califano M. Off-state quantum yields in the presence of surface trap states in CdSe nanocrystals: the inadequacy of the charging model to explain blinking. The Journal of Physical Chemistry C, 2011, 115(37): 18051-18054.

[33] Rosen S, Schwartz O, Oron D. Transient fluorescence of the off state in blinking CdSe/CdS/ZnS semiconductor nanocrystals is not governed by Auger recombination. Physical Review Letters, 2010, 104(15): 157404.

[34] Kagan C R, Lifshitz E, Sargent E H, et al. Building devices from colloidal quantum dots. Science, 2016, 353(6302).

[35] Anikeeva P O, Madigan C F, Halpert J E, et al. Electronic and excitonic processes in light-emitting devices based on organic materials and colloidal quantum dots. Physical Review B, 2008, 78 (8): 085434.

[36] Xu F, Ma X, Haughn C R, et al. Efficient exciton funneling in cascaded PbS quantum dot superstructures. ACS Nano, 2011, 5(12): 9950-9957.

[37] Chou K F, Dennis A M. Forster resonance energy transfer between quantum dot donors and quantum dot acceptors. Sensors, 2015, 15(6): 13288-13325.

[38] Xu L, Xu J, Ma Z, et al. Direct observation of resonant energy transfer between quantum dots of two different sizes in a single water droplet. Applied Physics Letters, 2006, 89(3): 033121.

[39] Spanhel L, Anderson M A. Synthesis of porous quantum-size cadmium sulfide membranes: Photolu-minescence phase shift and demodulation measurements. Journal of the American Chemical Society, 1990, 112(6): 2278-2284.

[40] Michalet X, Pinaud F F, Bentolila L A, et al. Quantum dots for live cells, in vivo imaging, and di-agnostics. Science, 2005, 307(5709): 538-544.

[41] Lingley Z, Lu S, Madhukar A. A high quantum efficiency preserving approach to ligand exchange on lead sulfide quantum dots and interdot resonant energy transfer. Nano Letters, 2011, 11(7): 2887-2891.

[42] Jarosz M V, Porter V J, Fisher B R, et al. Photoconductivity studies of treated CdSe quantum dot films exhibiting increased exciton ionization efficiency. Physical Review B, 2004, 70 ( 19 ):195327.

[43] Jing P, Zheng J, Zeng Q, et al. Shell-dependent electroluminescence from colloidal CdSe quantum dots in multilayer light-emitting diodes. Journal of Applied Physics, 2009, 105(4): 044313.

[44] Shirasaki Y, Supran G J, Tisdale W A, et al. Origin of efficiency roll-off in colloidal quantum-dot light-emitting diodes. Physical Review Letters, 2013, 110(21): 217403.

[45] Tang C W, Vanslyke S A. Organic electroluminescent diodes. Applied Physics Letters, 1987, 51 (12): 913-915.

[46] Dabbousi B O, Bawendi M G, Onitsuka O, et al. Electroluminescence from CdSe quantum-dot/pol-ymer composites. Applied Physics Letters, 1995, 66(11): 1316-1318.

[47] Zhao J, Bardecker J A, Munro A M, et al. Efficient CdSe/CdS quantum dot light-emitting diodes u-sing a thermally polymerized hole transport layer. Nano Letters, 2006, 6(3): 463-467.

[48] Anikeeva P O, Halpert J E, Bawendi M G, et al. Quantum dot light-emitting devices with electroluminescence tunable over the entire visible spectrum. Nano Letters, 2009, 9 ( 7 ):2532-2536.

[49] Yalcin S E, Yang B, Labastide J A, et al. Electrostatic force microscopy and spectral studies of e-lectron attachment to single quantum dots on indium tin oxide substrates. The Journal of Physical Chemistry C, 2012, 116(29): 15847-15853.

[50] Kim H Y, Park Y J, Kim J, et al. Transparent InP quantum dot light-emitting diodes with ZrO2 elec-tron transport layer and indium zinc oxide top electrode. Advanced Functional Materials, 2016, 26 (20): 3454-3461.

[51] Stouwdam J W, Janssen R a J. Red, green, and blue quantum dot LEDs with solution processable ZnO nanocrystal electron injection layers. Journal of Materials Chemistry, 2008, 18 ( 16 ):1889-1894.

[52] Cho K-S, Lee E K, Joo W-J, et al. High-performance crosslinked colloidal quantum-dot light-emitting diodes. Nature Photonics, 2009, 3(6): 341-345.

[53] Qian L, Zheng Y, Xue J, et al. Stable and efficient quantum-dot light-emitting diodes based on so-lution-processed multilayer structures. Nature Photonics, 2011, 5(9): 543-548.

[54] Kwak J, Bae W K, Lee D, et al. Bright and efficient full-color colloidal quantum dot light-emitting diodes using an inverted device structure. Nano Letters, 2012, 12(5): 2362-2366.

[55] Sun B, Sirringhaus H. Solution-processed zinc oxide field-effect transistors based on self-assembly of colloidal nanorods. Nano Letters, 2005, 5(12): 2408-2413.

[56] Mashford B S, Stevenson M, Popovic Z, et al. High-efficiency quantum-dot light-emitting devices with enhanced charge injection. Nature Photonics, 2013, 7(5): 407-412.

[57] Dai X, Zhang Z, Jin Y, et al. Solution-processed, high-performance light-emitting diodes based on quantum dots. Nature, 2014, 515(7525): 96-99.